Environmental Risk Factors for Parkinson's Disease

Harvey Checkoway, PhD

University of Washington

Dept. of Environmental & Occupational
Health Sciences
Seattle, WA

*Supported by P42ES04696

Parkinson's disease

- Chronic, neurodegenerative disorder due to dopamine deficiency
- Cardinal features: resting tremor; bradykinesia, gait disturbance, muscle rigidity
- First described by James Parkinson, 1817 (thought due to "fright")
- Pathological lesion: destruction of dopamine-producing neurons in substantia nigra (Lewy body formation)
- Prevalence in US ~150/100,000 (~2% at ages >65)
- Incidence in US ~15/100,000

Figure 8-5. Typical flexed posture of a patient with parkinsonism.

CHEMICAL STRUCTURE OF MPTP. MPP+, AND PARAQUAT

Risk factors for Parkinson's disease

- Older age: sharp increase over age 50
- Male gender: usually slight M:F ratio
- Pesticides:
 - Paraquat*
 - Roteneone *
 - Organochlorines
 - Organophosphates, carbamates, etc.
- Metals (Mn, Fe, Cu)
- Solvents (??)
- Rare genetic mutations (parkin, LRRK2)

^{*}Animal models established

Suspected environmental risk and protective factors for PD

Increase risk

- Pesticides
- Metals
- Industrial solvents

Decrease risk

- Cigarette smoke
- Caffeine
- Anti-oxidant micronutrients
- Estrogen
- Anti-inflammatory medications

PD relative risk by cumulative cigarette smoking history*

*Checkoway H, et al. Am J Epidemiol 2002;155:732-8

Pesticides and Parkinson's disease

- Many pesticides neurotoxic
- Structural similarity of MPTP and paraquat
- Animal studies
 - Paraquat + Mn interactions on nigral destruction
 - Rotenone model of PD induction in mice
- Epidemiologic studies
 - Ecological correlation studies
 - Case-control studies (paraquat, OPs, organochlorines)
 - Brain tissue studies (organochlorines)

Case-control study of pesticides and Parkinson's disease in Germany*

Exposure	Years used	Cases	Controls	OR +
Herbicides	0	238	287	1.0
	1-40	59	44	1.7
	41-80	34	15	3.0
	>80	20	10	2.4
Insecticides	0	213	258	1.0
	1-40	70	55	1.8
	41-80	46	25	2.5
	>80	21	14	2.1
Organo-	Never	262	309	1.0
chlorines	Ever	7	2	5.8

^{*}Odds ratio, adjusted for age, gender, smoking

^{*}Seidler A, et al. *Neurology* 1996;46:1275-84

Case-control study of pesticides in Taiwan*

Exposure variable	Years used	Cases	Controls	OR+
Herbicides/ pesticides	0 1-19 ≥20	74 14 32	199 21 20	1.0 1.5 4.5
Paraquat	0 1-19 ≥20	89 7 24	218 13 9	1.0 1.2 6.4

⁺ Odds ratio, adjusted for age, gender, smoking

^{*}Liou HH, et al. Neurology 1997;48:1583-8

Pesticide-related occupations worked at least 6 months and PD in men: Seattle study*

Occupation	Cases (N=135)	Controls (N=226)	OR+
Dairy farmer	14	28	0.81
Orchardist	6	9	1.49
Pesticide applicator	4	4	3.88
Farmer – any	45	69	1.25

⁺Odds ratio, adjusted for age, smoking

^{*}Firestone J, et. Arch Neurol 2005;62:91-5

Self-reported pesticide occupational pesticide exposures and PD, men: Seattle study*

Exposure	Duration (yrs)	Cases (N=135)	Controls (N=226)	OR+
Any	0.5-5	6	10	1.0
pesticide	>5	10	12	1.3
Incontinidas	0.5-5	5	11	0.9
Insecticides	>5	9	11	1.2
Herbicides	<u>></u> 0.5	2	6	0.6
Paraguat	0.5-5	0	1	0
Paraquat	>5	2	1	3.2

⁺Odds ratio, adjusted for age, smoking

^{*}Firestone J, et. *Arch Neurol* 2005;62:91-5.

Parkinson's disease risk in an elderly French cohort, 1992-98*

	Men		Women	
Exposure	RR+	95% CI	RR+	95% CI
Occupational	5.6	1.5-22	1.0	0.2-4.8
Main job in agriculture	1.6	0.3-8.6	8.0	0.1-6.4
Rural residence	1.5	0.4-5.5	1.3	0.4-4.3
Residence in vineyard district	0.5	0.1-2.3	0.9	0.2-3.2

Relative risk, adjusted for smoking, education

^{*}Baldi I et al. (2003) Am J Epidemiol 157:409-14

Prospective cohort study of PD in men and years worked on Hawaiian plantations: 1965-96*

Duration (yrs)	No. subjects	Cases	RR++	95% CI
0	5363	73	1.0	Ref
1-10	1843	24	1.0	0.6-1.6
11-20	315	7	1.7	0.8-3.7
>20	465	12	1.9	1.0-3.5

^{*}Petrovitch H, et al. *Arch Neurol* 2002;59:1787-92

⁺Sugarcane or pineapple

⁺⁺Relative risk adjusted for age, pack-yrs smoking, coffee consumption

Pesticide Exposures and Parkinsonism: Any Pesticides

Engel L, et al. Occup Environ Med 2001;58:582-9

Insecticide Exposures and Parkinsonism

Engel L, et al. Occup Environ Med 2001;58:582-9

Herbicides Exposures and Parkinsonism

Evidence for metals as PD risk factors

- Chronic manganism similar clinical features as PD
- Mn, Fe involved in free radical formation (via Fenton reaction)
- Elevated concentrations of various metals in PD brain (mixed evidence)

Occupational metal exposures and PD: Detroit area case-control study*

Metal	Exposure (yr)	Relative risk	95% CI
Lead	<u><</u> 20	1.08	0.55-2.13
	>20	2.05	0.97-4.31
Iron	<u><</u> 20	1.02	0.59-1.75
	>20	1.27	0.69-2.34
Copper	<u><</u> 20	1.15	0.55-2.41
	>20	2.49	1.06-5.89
Manganese	<u>≤</u> 20	0.40	0.05-3.24
	>20	10.6	1.06-106

^{*}Gorell JM et al. (1997) *Neurology* 48:650-8

Combined occupational metal exposures and PD: Detroit area case-control study*

Metals	Exposures	Relative risk	95% CI
Lead + Copper	Both >20 yr	5.25	1.59-17.2
Lead + Iron	Both >20 yr	2.84	1.07-7.50
Iron + Copper	Both >20 yr	3.69	1.40-9.71

^{*}Gorell JM et al. (1997) Neurology 48:650-8

Parkinsonism prevalence among Alabama welders and boilermakers compared to general population rates*

Occupational group	Prevalence ratio+	95% CI
Boilermakers	10.3	2.6-40.5
Welders	7.3	3.1-17.1
Welder helpers	9.0	2.8-29.1
Combined	7.6	3.3-17.7

^{*}Racette B, et al. (2005) Neurology 64:230-5

⁺Compared to prevalence in Copiah County, MS

Challenges in identifying environmental risk factors for PD

- Case ascertainment—diagnostic uncertainty, few pop. based registries
- Difficulties of accurate exposure assessment
- Probably low attributable risks for specific agents
- PD is a complex disease—potentially multiple phenotypes

Recommendations for future research

 Better characterization of geneticallydetermined susceptibility factors (gene/environment interactions)

 Increased focus on populations with well documented exposures (e.g., pesticide applicators, welders, cotton textile workers exposed to endotoxin)

Sometimes break-throughs occur!

